ECE 232
Lab
Transformers

Objective:
1. To learn how real world transformers operate under ideal conditions. 
2. To learn what happens to the output voltage when the transformer is loaded.

Preliminary Work:

1) Consider the ideal transformer shown in Figure 1.
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Figure 1

a. Show the relation between 

b. If V , calculate
c. If Calculate .
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Figure 2

a)Determine the T equiavalent circuit of the linear transformer in Fig 2
3)  Determine  the Π equivalent circuit of an linear transformer shown in Figure 3. 
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Figure 3


EXPERIMENTAL WORK

1) [bookmark: _GoBack]Set up the circuit of Figure 2. Adjust the sine wave output of the signal generator so that Vin(t) is a  sine wave with 50Hz frequency.
2)Determine the complex power for the primary winding.
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Figure 13.30
(a) Ideal transformer, (b) circuit symbol
for ideal transformers.
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Figure 13.31
Relating primary and secondary quantities
in an ideal transformer.

‘When a sinusoidal voltage is applied fo the primary winding as
shown in Fig. 13.31, the same magnetic flux ¢ goes through both
windings. According to Faraday’s law, the voltage across the primary
winding is

dd
vy = N,j‘f (13.502)

while that across the secondary winding is

dd
v, = N27‘f (13.50b)

Dividing Eq. (13.50b) by Eq. (13.50a), we get
v, N
n_M_, (13.51)
v, N

where 1 is, again, the furns ratio or transformation ratio. We can use
the phasor voltages V, and V, rather than the instantaneous values v;
and v,. Thus, Eq. (13.51) may be written as

w_Mm
2=-2_,
Vi M
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coupled circuit by an equivalent circuit with no magnetic coupling. We
want to replace the linear transformer in Fig. 13.21 by an equivalent T
or IT circuit, a circuit that would have no mutual inductance.

The voltage-current relationships for the primary and secondary
coils give the matrix equation

[Vl] _ [j{n)Ll ]wM} {1]]
v, JoM jeL,||L,
By matrix inversion, this can be written as

(13.44)

Our goal is to match Eqs. (13.43) and (13.44) with the corresponding
equations for the T and IT networks.

For the T (or ) network of Fig. 13.22, mesh analysis provides the
terminal equations as

(13.45)

Figure 13.21
Determining the equivalent circuit of a
linear transformer.

Figure 13.22
An equivalent T circuit.
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IT the circuits 1n Figs. 13.21 and 13.22 are equivalents, Eqs. (13.43)
and (13.45) must be identical. Equating terms in the impedance matri-
ces of Egs. (13.43) and (13.45) leads to

Ly=L,—M, L.=M | (1346

L Ie L, For the TT (or A) network in Fig. 13.23, nodal analysis gives the

=  am———— o terminal equations as

+ +

vy Ly g X v,

o o (13.47)

Figure 13.23

An equivalent IT circuit.
Equating terms in admittance matrices of Eqs. (13.44) and (13.47), we
obtain

LiL, — M L, - M

Ly=

Note that in Figs. 13.22 and 13.23, the inductors are not magnetically
coupled. Also note that changing the locations of the dots in Fig. 13.21
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