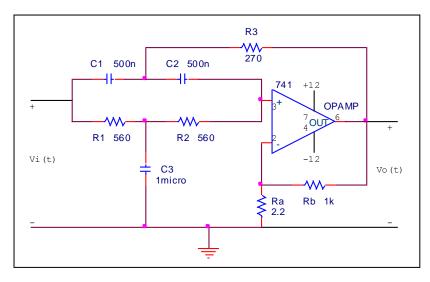

ECE 232- Advanced Circuit Analysis

<u>Lab6</u>


Active RC Filters 1

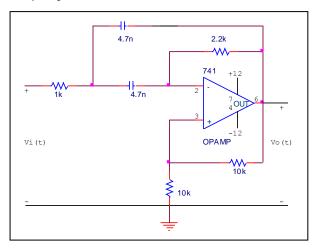
Preliminary work:

Determine and sketch the magnitude and the phase of the response function H(jw)=Vo(jw)/V(jw). Indicate the half-power frequency w_c .

2. Consider the following band-stop (notch) filter

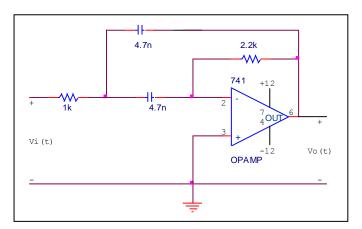
Sketch the magnitude and the phase of the response function H(j)=Vo(jw)/Vi(jw). Indicate half-power angular frequency values w_{c_1} , w_{c_2} , the angular frequency w_o where minimum of response is attained, and the stop-band bandwidth, Δw .

Experimental procedure:


Set up the circuits in parts 1 and 2 of the preliminary work. Plot the magnitude and phase of the frequency response function and compare the outputs with the theoretical results.

Hint: Use $2^{*1}\mu$ F capacitors instead of using $1^{*0.5}\mu$ F capacitors

Active RC Filters 2


Preliminary work:

1. Consider the following band-pass filter

Determine and sketch the magnitude and the phase of the response function H(jw)=Vo(jw)/V(jw). Indicate the half-power angular frequencies w_{c_1} , w_{c_2} , and center frequency w_{o_1} and bandwidth, Δw .

3. Consider the following circuit

Sketch the magnitude and the phase of the response function H(j)=Vo(jw)/Vi(jw). Indicate half-power angular frequency values w_{c1} , w_{c2} , the angular frequency w_0 , and the pass-band bandwidth, Δw .

Experimental procedure:

Set up the circuits in parts 1 and 2 of the preliminary work. Plot the magnitude and phase of the frequency response function and compare the outputs with the theoretical results.